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Abstract
During reading, readers intentionally do not fixate a word
when highly confident in its identity. In a rational model of
reading, word skipping decisions should be complex functions
of the particular word, linguistic context, and visual informa-
tion available. In contrast, simple heuristic of reading only
predicts additive effects of word and context features. Here we
test these predictions by implementing a rational model with
Bayesian inference, and predicting human skipping with the
entropy of this model’s posterior distribution. Results showed
a significant effect of the entropy in predicting skipping above
a strong baseline model including word and context features.
This pattern held for entropy measures from rational models
with a frequency prior but not from ones with a 5-gram prior.
These results suggest complex interactions between visual in-
put and linguistic knowledge as predicted by the rational model
of reading, and a dominant role of frequency in making skip-
ping decisions.
Keywords: eye movements; reading; word identification; ra-
tional analysis; skipping

Introduction
To achieve comprehension in reading, readers move their eyes
across the text to obtain the information needed to identify
the words. In the past decades, research on eye movements
in reading has provided ample evidence that word identifi-
cation can be seen as the primary driver of eye movements.
The reasoning behind this conclusion, however, is based on
relatively coarse observations, such as demonstrating that
eye movements are sensitive to aggregate variables that are
important in word identification (e.g., word length and fre-
quency). Although such a coarse linking hypothesis between
word identification and eye movements successfully predicts
several reading behaviors, a model of reading that connects
eye movements to ongoing language processing in a deeper
way could lead to more precise predictions, improved data
analysis, and an overall fuller utilization of the eye movement
record to advance theories of sentence processing.

One promising model of this type comes from a perspective
of rational analysis. The idea is to consider the reading pro-
cess as one that combines information from various sources
to identify words and then makes eye movement decisions to
maximize identification efficiency (Bicknell & Levy, 2010,
2012; Legge, Klitz, & Tjan, 1997; Legge, Hooven, Klitz,
Mansfield, & Tjan, 2002). In previous rational models of
reading, text identification process is modeled using Bayesian
inference that combines two sources of information: (1) prob-
abilistic knowledge of the structure of the language, serving

as the prior, and (2) uncertain visual evidence, serving as the
likelihood. Given a prior and a particular set of visual evi-
dence, probabilistic inference yields a posterior distribution
on the text, which specifies the probability of each possible
identity of the text. The role of eye movements in this analysis
is to obtain particular pieces of visual evidence, and the most
efficient, rational reading behavior will be to use the current
posterior distribution to determine the most useful time and
place to move the eyes next. Therefore, any eye movement
behaviors explained by this model of reading can be seen as
naturally born from one simple origin: the rational gathering
of visual evidence for text identification.

In contrast, the dominant models of eye movement control
in reading tend to use heuristic linking hypothesis between
text identification and eye movements (e.g., E-Z Reader,
Reichle et al., 2009; and SWIFT, Engbert et al., 2005). In
these models, eye movements are driven by a word identifi-
cation process that is represented with discrete states (e.g., not
identified, partially identified that leads to saccade program-
ming, fully identified), the transitions between which depend
on a certain amount of durations computed from a few coarse
visual and linguistic variables of the word. For example, in
E-Z Reader the duration of L1 and L2 depend on a stochas-
tic function of two linguistic variables, the word’s frequency
in the language and its predictability in context, and one vi-
sual variable, the average distance from each of its letters to
the point of fixation. After spending the pre-computed dura-
tion needed to achieve a certain stage of word identification
to begin programming a saccade and then achieve complete
identification of the current word, the model moves eyes to
(roughly) the center of the next word to be identified. The role
of eye movements in this heuristic model is a direct reflec-
tion (with stochastic noise) of cognitive process identifying a
word, the difficulty of which depends on coarse properties of
the word as a whole.

There are situations where word identification can be com-
pleted with more fine-grained knowledge about the particu-
lar word than merely coarse information, and we would like
to make precise predictions about eye movement behaviors
accordingly. Consider situations where visual information
about only the beginning of some words is enough for iden-
tification, e.g., seeing the initial letters ‘xyl’ of the word ‘xy-
lophone’ (Hyönä, Niemi, & Underwood, 1989). Similarly, in
certain linguistic contexts, a reader only needs to see a few of
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the initial letters of a word to be confident in its identification,
such as in ‘The children went outside to pl. . . ’. Do readers in
fact combine more fine-grained information than simply word
frequency and word length in the way as predicted by rational
models of reading?

As illustrated in the preceding examples, an ideal testbed
for these predictions of a rational model is when a word is
identifiable with visual information about only part of the
word. In natural reading, this situation occurs often in the eye
movement behavior of skipping, when a reader move their
eyes past a word without ever having directly fixated it. In-
tentionally skipping a word is generally modeled as a case
in which the reader has identified the word (possibly incor-
rectly) while still looking at a prior word, and thus makes
a saccade that takes the eyes past the word, skipping over
it. Since this (implicit) decision about whether to skip the
word is made when the reader is fixating a prior word, this
is a case when the reader has high quality visual information
about only some of the word’s initial letters but does not yet
have high quality visual information about the whole word.
The amount of visual information the reader has at this time
is a function of the launch site, the distance from the fixation
position to the beginning of the word. In such a situation,
both the rational model and the heuristic model predict that
how likely a reader is to skip a word should be a function
of launch site (amount of visual input), and also of linguis-
tic knowledge (which words are common, and which words
are likely in this position). The rational model alone addi-
tionally predicts that readers’ likelihood of skipping the word
will vary depending on the particular visual information ob-
tained, and whether that information distinguishes it strongly
from its (likely) visual neighbors. Therefore, skipping should
be observed to be a complex function of the launch site, the
particular word, and linguistic knowledge, in contrast to the
heuristic model’s predictions of skipping as well-described
by coarse visual and linguistic information about the whole
word.

Previous empirical research finds that readers’ likelihood
of skipping a word increases with short word length, close
launch sites to the word, high word frequency, and high con-
textual predictability (Rayner, 1998). Regarding how differ-
ent sources of information may interact in skipping, studies of
skipping short words and especially the word the suggest that
visual information and word frequency information trump
information from the sentence context (Angele & Rayner,
2013; Angele, Laishley, Rayner, & Liversedge, 2014). De-
spite these findings, the fine-grained predictions of a ratio-
nal model can be better tested with a set of eye movement
decisions that happen in natural reading and that have wide
variation in visual and linguistic information available to the
reader. The goal of the current paper is to directly test the
fine-grained predictions using word skipping, and to gain in-
sights into the role of different sources of information in mak-
ing skipping decisions.

Related work
Empirical findings about skipping
At the aggregate level, the effects of visual and linguistic vari-
ables on skipping are very robust. Word length is consid-
ered to play a more important role than any other factors,
as found in a meta-analysis showing that word length ex-
plained more variance than word frequency and predictabil-
ity in regression models predicting skipping rate (Brysbaert,
Drieghe, & Vitu, 2005). The effect that close launch sites in-
crease skipping rates is also strong and robust (Brysbaert et
al., 2005). As for linguistic variables, there is abundant ex-
perimental evidence that skipping rate increases as word fre-
quency increases (Rayner, Sereno, & Raney, 1996; Angele
et al., 2014), and that high predictability leads to high skip-
ping rate (Balota, Pollatsek, & Rayner, 1985; Rayner, Slat-
tery, Drieghe, & Liversedge, 2011). Predictability is usually
measured as cloze probability, varying across conditions ei-
ther with different sentential frames or target words (Balota
et al., 1985; Rayner et al., 2011). The effects hold in corpus
analysis as well, as Luke and Christianson (2016) find that
high target predictability lead to more word skipping for both
content and function words. Kliegl, Grabner, Rolfs, and Eng-
bert (2004) also find significant effect of predictability, word
length, and word frequency on skipping rate using regression
analyses on Potsdam Sentence Corpus, though not including
any interactions among these factors.

Several studies have looked into the interactions between
visual and linguistic factors on a coarse level. One approach
is to analyze linguistic effects on data split in launch sites in
post-hoc analysis. For example, Rayner et al. (1996) observe
reliable frequency effect on skipping rate at near launch sites
(> −5) but not at far launch sites, and White, Rayner, and
Liversedge (2005) find significant interaction between pre-
dictability and word length preview overall, which diminish
to non-effect for far launch sites (near launch sites are de-
fined as those ≥ −3, while far launch sites are those ≤ −4).
Another approach to study the interaction of visual and lin-
guistic information is to manipulate parafoveal preview. A
preview of the definite article the increases readers’ skipping
rate, even when syntactic constraints do not allow for articles
to occur in that position (Angele & Rayner, 2013; Angele
et al., 2014). Skipping rates are higher for the preview of a
highly predictable word or its visually similar nonword coun-
terpart than the preview of a low-predictability word (Balota
et al., 1985), and for the preview of a predictable word than
for a visually similar nonword (Drieghe, Rayner, & Pollat-
sek, 2005). Staub and Goddard (2019) observe that frequency
effect on skipping rate is maintained with both valid and
invalid preview, but predictability influences skipping only
with valid preview. Additionally, English readers only ben-
efit from the preview of a semantically similar neighbor in
highly-constraining context but not in moderate-constraining
context (Schotter, Lee, Reiderman, & Rayner, 2015).

In sum, previous research have identified visual and lin-
guistic factors that influence skipping by conducting reading
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experiments and corpus studies. There is also evidence for in-
teractions between visual and linguistic factors, but they are
constrained to a small set of well-controlled language mate-
rials and analyzed on a coarse level. A systematic analysis
with skipping made for a variety of words in a variety of con-
texts with a variety of launch sites would help gain insights
into how visual and linguistic variables interacts to identify a
word before fixating it and skip at a fine-grained level.

Other instances of rational models of reading
Previous instances of the rational models of reading have
provided explanation for several eye movement phenomena.
For example, they explain why the initial fixation tends to
land near word center and is affected by the launch distance
(Legge et al., 2002), why readers often make regressions
to previous words (Bicknell & Levy, 2010), and why high-
frequency and low-surprisal words yield lower reading diffi-
culty than low-frequency and high-surprisal words (Bicknell
& Levy, 2012). In the field of single word identification,
Duan and Bicknell (2017) implement a rational model of re-
fixations, and find that readers rationally make refixations to
seek visual information from parts of the word that the read-
ers are uncertain.

The rational model of skipping presented in this paper has
different focuses than previous models. Instead of setting the
goal to be identifying a whole sentence, the rational model
of skipping focus on identifying a single word before directly
fixating it. Previously, the computational cost is high due to
recomputing posterior beliefs about an entire sentence after
each new piece of visual evidence. The model of skipping is
computationally simple, enabling the incorporation of sophis-
ticated models of language knowledge and visual evidence.

Rational model of skipping
Word identification as Bayesian inference
In our rational model of skipping, word identification uses
Bayesian inference, in which a prior distribution over pos-
sible identities of the word given by the language model is
combined with a likelihood term given by ‘noisy’ visual in-
put conditional on the fixation position to form a posterior
distribution over the identity of the word. Formalized with
Bayes’ theorem,

p(w|I) ∝ p(w)p(I|w) (1)

where the probability of the true identity of the word being w
given uncertain visual input I is calculated by multiplying the
language model prior p(w) with the likelihood p(I|w) of ob-
taining this visual input from word w, and normalizing. Since
the shape of the posterior distribution depends on the prob-
ability of each word relative to probabilities of other words
in the vocabulary, it contains information about how well a
word is distinguished from its neighbors.

In general, the prior p(w) represents reader expectations
for the next word, and for the present paper, we compare two

representations of the prior: a word unigram model (i.e., us-
ing word frequency information), which ignores any context
information, and a 5-gram model, which conditions on the
previous four words of context. The likelihood p(I|w) repre-
sents how likely a piece of visual input is from a word w. For
the present paper, we assume that all visual input is obtained
only from the final fixation position prior to either fixating
the word or skipping it (i.e., the launch site). The visual input
obtained about a word consists of independent visual input
obtained from each letter in it. Each letter is represented as a
one-hot 52-dimensional vector (distinguishing 26 lower- and
upper-case letters), with a single element being 1 and the rest
being 0. Visual input about each letter is accumulated iter-
atively over time by sampling from a multivariate Gaussian
distribution centered on that letter with a diagonal covariance
matrix Σ = λ−1I, where λ is the reader’s visual acuity for that
letter. Visual acuity depends on the location of the letter in
relation to the point of fixation, or eccentricity, which we de-
note ε. Similar to Bicknell and Levy (2010), we assume that
acuity is a symmetric, exponential function of eccentricity:

λ(ε) =
∫

ε+.5

ε−.5

1√
2πσ2

exp(− x2

2σ2 )dx (2)

with σ = 3.075, the average of two σ values for the asymmet-
ric visual acuity function (σL = 2.41 for the left visual field,
σL = 3.74 for the right visual field) used in Bicknell and Levy
(2010). In this paper, we take σ, the effective width of the vi-
sual field, as a free parameter, and experiment with a set of σ

values. In addition, we introduce another free parameter Λ to
scale the overall quality of visual information by multiplying
it with each acuity λ (see the Experiment section below).

Single word belief updating

Given visual information and linguistic expectations, we may
thus compute a posterior distribution over possible identities
of the word. Since visual information arrives over time, this
is a Bayesian belief updating process, where beliefs are up-
dated as each new piece of visual information arrives. In the
single word domain we study here, this Bayesian belief up-
dating process turns out to be relatively computationally sim-
ple, and can be implemented as sampling from a multidimen-
sional Gaussian distribution. Say we have a vocabulary of
size v, where each word has dimensionality d (here d = 52×
number of characters in the word), and we denote y1, y2, ...,
yv as the vector representations of all the words in the vo-
cabulary. We can represent the current posterior over words
at time step t by a (v− 1)-dimensional log-odds vector x(t),
where each element x(t)i represents the log-odds of yi rela-
tive to the final word yv. Working with beliefs in this format
means that Bayesian inference is just additive in log-odds (no
renormalization):
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x(t)i = log
p(wi|I(0,...,t))
p(wv|I(0,...,t))

= log
p(I(t)|wi)p(wi|I(0,...,t−1))

p(I(t)|wv)p(wv|I(0,...,t−1))

= log
p(I(t)|wi)

p(I(t)|wv)
+ log

p(wi|I(0,...,t−1))

p(wv|I(0,...,t−1))

= ∆x(t)i +x(t−1)
i

(3)

That is, the log-odds posterior at time step t equals the
log-odds posterior at time step t − 1 (which serves as the
prior at time step t) plus the log-odds likelihood. Thus, in
an iterative belief-updating context, the log-odds vector be-
gins at a value set by the prior, here the language model,
x(0)i = log p(wi)− log p(wv). Then, as each piece of visual in-
formation I(t) arrives, updating beliefs is as simple as adding
to x(t−1) the likelihood log-odds vector for this new piece of
information ∆x(t), where each element ∆x(t)i gives the likeli-
hood log-odds for that word relative to the final word wv. For
a given true word, vocabulary, and eccentricity, the density
function for the likelihood log-odds vector ∆x(t) is a (v−1)-
dimensional multivariate normal distribution, as each element
∆xi is an affine transformation of I, which is itself a multi-
variate Gaussian.

Experiment
To test whether readers display signatures of optimal integra-
tion across these contexts, we build a computational imple-
mentation of an ideal-integration model predicting identifi-
cation confidence for each skipping decision. We show that
these model predictions explain significant variance in human
skipping rates when added to a strong baseline model.

Baseline model
Data The English part of the Dundee corpus contains eye
movement records from 10 native English-speaking partici-
pants as they read through newspaper editorials (see Kennedy
& Pynte, 2005, for further details.) We included 122,230 ob-
servations from the Dundee corpus if they were: 1) a word
skipped on first pass (coded as a 1) or a word fixated on
first pass (coded as a 0); 2) not adjacent to any blink; and
3) not the first or last fixation on a line. Further, the fix-
ated/skipped word should not 1) contain any non-alphabetical
character or be adjacent to punctuation, or 2) follow a word
that was skipped or refixated. We excluded observations with
far launch sites and long word lengths to ensure enough ob-
servations on every level of variations. In the final data,
launch sites ranged between [-10, -1], with more than 1000
observations from each launch site, and word length ranged
between [1, 8], with the skipping rate being higher than 9%
for each word length. The overall skipping rate was 53.9%,
resulting from the generally high skipping rate of Dundee cor-
pus, which was over 40% (Demberg & Keller, 2008), and our
criterion of requiring the previous word to be fixated, leading
to a skipping rate even higher.

Table 1: Generalized additive mixed-effects regression model
results of baseline model (note that random slopes for these
fixed effects were not included in the model; the model in-
cluded a random intercept over participants). The GAMM
was fitted by REML, and p-values were reported using sum-
mary.gam function in mgcv package (Wood, 2011).

χ2 p-value
word length 6026.25 < 2×10−16∗∗∗

launch site 9123.73 < 2×10−16∗∗∗

frequency 527.94 < 2×10−16∗∗∗

surprisal (5-gram) 38.40 1.01×10−6∗∗∗

context entropy 71.16 8.28×10−11∗∗∗

word length × frequency 89.06 7.73×10−16∗∗∗

launch × frequency 36.09 2.85×10−5∗∗∗

launch × surprisal 29.39 1.13×10−4∗∗∗

launch × entropy 66.82 2.24×10−11∗∗∗

word length (word N-1) 828.66 < 2×10−16∗∗∗

frequency (word N-1) 54.11 1.62×10−9∗∗∗

5-gram (word N-1) 127.22 < 2×10−16∗∗∗

context entropy (word N-1) 31.68 5.05×10−5∗∗∗

word length × frequency
(word N-1) 84.69 1.73×10−14∗∗∗

Model We analyzed first-pass skipping in the Dundee cor-
pus with a generalized additive mixed-effects regression
model (GAMM) predicting skipping from a wide range of
variables previously shown to influence skipping, including
word length, launch site, word frequency, surprisal, and con-
textual constraint. We estimated word frequency (log un-
igram probability) and 5-gram surprisal (log 5-gram prob-
ability) with n-gram models (Goodkind & Bicknell, 2018)
trained on Google One Billion Word Benchmark (Chelba et
al., 2013), and we measured contextual constraint as the en-
tropy of the 5-gram probability distribution of words in a
vocabulary of 20,001 words. We defined the vocabulary to
include all words that were in both the Dundee corpus and
our language modeling corpus, plus words with frequencies
above a cutoff chosen such that the resulting total vocabu-
lary would have about 20,000 words. We also controlled for
the previous word’s properties such as word length and fre-
quency, and included a random intercept over participants.
Crucially, this GAMM allowed for non-linear effects of each
of these variables, providing a strong baseline. Table 1 shows
all the fixed effects in the baseline model.

Rational model
Simulation For each observation in the dataset, we simu-
lated 50 trials using the rational model of skipping for each
parametrization of the model. In each trial, a piece of vi-
sual information from the launch site is sampled and com-
bined with the linguistic information to generate a posterior
distribution of possible identities of the word. As described
above, the visual information in this model has two param-
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Table 2: Significance of averaged entropy of a rational
model’s posterior distribution when added to the baseline
model.

Prior: Frequency Prior: 5-gram
(σ,Λ) z-value p-value z-value p-value
(1,5) -2.99 2.78×10−3∗∗ 1.23 0.22
(1,15) -2.51 0.012∗ 1.43 0.15
(1,30) -2.07 0.039∗ 2.27 0.024∗

(2,5) -4.49 7.26×10−6∗∗∗ 1.15 0.25
(2,15) -4.22 2.4×10−5∗∗∗ 1.67 0.095.

(2,30) -2.75 6.02×10−3∗∗ 1.96 0.05.

(3,5) -5.76 8.32×10−9∗∗∗ 1.23 0.22
(3,15) -4.92 8.75×10−7∗∗∗ 1.56 0.12
(3,30) -3.88 1.03×10−4∗∗∗ 1.04 0.30
(4,5) -5.98 2.27×10−9∗∗∗ 1.16 0.25
(4,15) -4.22 2.50×10−5∗∗∗ 2.15 0.032∗

(4,30) -4.04 5.36×10−5∗∗∗ 1.43 0.15
(5,5) -5.58 2.37×10−8∗∗∗ 1.14 0.26
(5,15) -4.81 1.55×10−6∗∗∗ 1.78 0.076.

(5,30) -3.01 2.65×10−3∗∗ 2.28 0.023∗

eters: overall visual input quality Λ and the width of acu-
ity function σ. We used fifteen sets of parameter pairs for
the models; these parameters were chosen to be values that
spanned a wide part of the parameter space while also re-
specting the trade-off between width of the acuity function
and its overall quality.1 The linguistic information (prior) in
this model is given by either the word frequency (unigram) or
5-gram language models, as used in our baseline model.

Analysis From each trial, we extract the entropy of the pos-
terior distribution (postH) and then calculate the average of
postH from the 50 trials for each observation (for each model
parametrization). For each parametrization, we add this av-
erage postH to our baseline model as a linear predictor. If
human readers extract visual and linguistic information in a
rational manner, we predict postH to show a significant effect
predicting human skipping, even in a strong baseline model,
such that skipping is more likely when the posterior entropy
is low.

Results
Baseline model
GAMM results of the baseline model are summarized in
Table 1. The results confirm previous findings that word
length, launch site, frequency, surprisal, and contextual con-
straint significantly influenced human skipping. Moreover,
this baseline model captures non-linear interactions among
these predictors, indicating that different sources of informa-
tion interactively guide skipping at an aggregated level.

1If the function is very wide and high quality, the model has too
much information about the whole word, whereas if narrow and low
quality, the model has almost no information.
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Figure 1: Partial effect of postH with a frequency prior in
predicting skipping rate.

Rational model
The partial effects of postH computed from the GAMMs are
visualized in Figure 1 (frequency prior) and Figure 2 (5-gram
prior), after controlling for all variables in the baseline model
and additionally a random slope of postH over participants.
The significance of postH when added to the baseline model
is reported in Table 2. For postH from rational models with
a frequency prior, the effects are significant in the predicted
direction: high postH indicates high uncertainty about the
word’s identification and is associated with lower skipping
rates; these effects are robust to parameter choice and are sig-
nificant for all parametrizations tested. For postH from ra-
tional models with a 5-gram prior, the effects are generally
not significant, though they do all trend in the same direction
and show the pattern that skipping rates increase as the un-
certainty over the word’s identity increases, opposite to the
predicted direction.

Discussion
In this paper, we implemented a computational model of skip-
ping that used Bayesian inference to combine visual and lin-
guistic information. We then extracted the entropy of the
posterior distribution as a measure of readers’ confidence
about word identification, and tested whether this measure
improved the predictive power of a strong baseline model in-
corporating aggregate visual and linguistic factors known to
influence skipping. Results showed that this postH measure
had significant additional effect predicting skipping when ex-
tracted from rational models with a frequency prior, but gen-
erally not when extracted from rational models with a 5-gram
prior. The direction of the effect of postH from models with a
frequency prior is consistent with the prediction that low con-
fidence about word identification leads to decreased skipping
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Figure 2: Partial effect of postH with a 5-gram prior in pre-
dicting skipping rate.

rate, while the trend of the effect of postH from models with
a 5-gram prior is in an opposite direction.

These findings generally provide positive evidence for the
rational model’s prediction that readers’ likelihood of skip-
ping vary depending on the particular visual information ob-
tained, and whether that information distinguishes it strongly
from its (likely) visual neighbors as in linguistic knowledge.
The predictor, postH, is computed from the posterior distribu-
tion of a Bayesian inference model with partial visual infor-
mation about the word, and therefore captures how likely the
word is differentiated from its neighbors in the vocabulary.
If the true word is much more likely than its visually-similar
neighbors, the postH should be low, while if the true word
and its neighbors have similar probabilities, the postH should
be high. Such a measure of reader’s confidence about word
identification is dynamic, innate, and hard to capture in fac-
torial experiments, but can be approached through computa-
tional simulation. Its significant effect is not predicted by the
heuristic model in principle, as postH is assumed to utilize
information about how particular words relate to their neigh-
bors regarding the specific visual information obtained about
parts of the word.

The observation that postH from a frequency prior better
predicts skipping than the 5-gram prior is potentially prob-
lematic for a fully rational model of skipping, though: a
reader that maximize usage of all the information available
should be better predicted by a model with 5-gram prior than
one with frequency prior. Rather, this pattern lines up with
previous findings on the skipping of the, which relies on vi-
sual and frequency information more than structural infor-
mation (Angele et al., 2014). This pattern is also consistent
with the finding that frequency effect but not predictability ef-
fect on skipping survives bad parafoveal visual input, which

may be explained by different time course of frequency and
contextual information in making eye movement decisions
(Staub & Goddard, 2019). A possible reason of our finding
is that skipping decisions may be made without full knowl-
edge of the context, leading to the absence of effect from
our measure (i.e. 5-gram) of contextual information. Specifi-
cally, since saccade programming takes a relatively long time
and identification/processing of the fixated word continues
during this lag, skipping decisions may be made before the
previous word is fully identified and integrated into the con-
text. In spite of this issue to be further examined, we find
that the entropy of a posterior distribution from a frequency
prior improves prediction of skipping with average variables,
suggesting a complex combination of information sources as
predicted by rational models of reading.
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