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Abstract

We describe a method for rapidly creating lan-

guage proficiency assessments, and provide

experimental evidence that such tests can be

valid, reliable, and secure. Our approach is the

first to use machine learning and natural lan-

guage processing to induce proficiency scales

based on a given standard, and then use linguis-

tic models to estimate item difficulty directly

for computer-adaptive testing. This alleviates

the need for expensive pilot testing with human

subjects. We used these methods to develop an

online proficiency exam called the Duolingo

English Test, and demonstrate that its scores

alignsignificantlywithotherhigh-stakes English

assessments. Furthermore, our approach pro-

duces test scores that are highly reliable, while

generating item banks large enough to satisfy

security requirements.

1 Introduction

Language proficiency testing is an increasingly

important part of global society. The need to dem-

onstrate language skills—often through standard-

ized testing—is now required in many situations

for access to higher education, immigration, and

employment opportunities. However, standard-

ized tests are cumbersome to create and main-

tain. Lane et al. (2016) and the Standards for

Educational and Psychological Testing (AERA

et al., 2014) describe many of the procedures

and requirements for planning, creating, revis-

ing, administering, analyzing, and reporting on

high-stakes tests and their development.

In practice, test items are often first written by

subject matter experts, and then ‘‘pilot tested’’

with a large number of human subjects for psy-

∗ Research conducted at Duolingo.

chometric analysis. This labor-intensive process

often restricts the number of items that can feasibly

be created, which in turn poses a threat to security:

Items may be copied and leaked, or simply used

too often (Cau, 2015; Dudley et al., 2016).

Security can be enhanced through computer-

adaptive testing (CAT), by which a subset of

items are administered in a personalized way

(based on examinees’ performance on previous

items). Because the item sequences are essentially

unique for each session, there is no single test

form to obtain and circulate (Wainer, 2000), but

these security benefits only hold if the item bank

is large enough to reduce item exposure (Way,

1998). This further increases the burden on item

writers, and also requires significantly more item

pilot testing.

For the case of language assessment, we tackle

both of these development bottlenecks using

machine learning (ML) and natural language

processing (NLP). In particular, we propose the

use of test item formats that can be automatically

created, graded, and psychometrically analyzed

using ML/NLP techniques. This solves the ‘‘cold

start’’ problem in language test development,

by relaxing manual item creation requirements

and alleviating the need for human pilot testing

altogether.

In the pages that follow, we first summarize

the important concepts from language testing

and psychometrics (§2), and then describe our

ML/NLP methods to learn proficiency scales for

both words (§3) and long-form passages (§4). We

then present evidence for the validity, reliability,

and security of our approach using results from

the Duolingo English Test, an online, operational

English proficiency assessment developed using

these methods (§5). After summarizing other

related work (§6), we conclude with a discussion

of limitations and future directions (§7).
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Figure 1: The Rasch model IRF, showing the prob-

ability of a correct response pi(θ) for three test item

difficulties δi, across examinee ability level θ.

2 Background

Here we provide an overview of relevant language

testing concepts, and connect them to work in ma-

chine learning and natural language processing.

2.1 Item Response Theory (IRT)

In psychometrics, item response theory (IRT) is a

paradigm for designing and scoring measures of

ability and other cognitive variables (Lord, 1980).

IRT forms the basis for most modern high-stakes

standardized tests, and generally assumes:

1. An examinee’s response to a test item is

modeled by an item response function (IRF);

2. There is a unidimensional latent ability for

each examinee, denoted θ;

3. Test items are locally independent.

In this work we use a simple logistic IRF,

also known as the Rasch model (Rasch, 1993).

This expresses the probability pi(θ) of a correct

response to test item i as a function of the

difference between the item difficulty parameter

δi and the examinee’s ability parameter θ:

pi(θ) =
1

1 + exp(δi − θ)
. (1)

The response pattern from equation (1) is shown

in Figure 1. As with most IRFs, pi(θ) mono-

tonically increases with examinee ability θ, and

decreases with item difficulty δi.

In typical standardized test development, items

are first created and then ‘‘pilot tested’’ with

human subjects. These pilot tests produce many

〈examinee, item〉 pairs that are graded correct

or incorrect, and the next step is to estimate θ

and δi parameters empirically from these grades.

The reader may recognize the Rasch model as

equivalent to binary logistic regression for pre-

dicting whether an examinee will answer item

i correctly (where θ represents a weight for the

‘‘examinee feature,’’ −δi represents a weight for

the ‘‘item feature,’’ and the bias/intercept weight

is zero). Once parameters are estimated, θs for

the pilot population can be discarded, and δis are

used to estimate θ for a future examinee, which

ultimately determines his or her test score.

We focus on the Rasch model because item

difficulty δi and examinee ability θ are interpreted

on the same scale. Whereas other IRT models

exist to generalize the Rasch model in various

ways (e.g., by accounting for item discrimination

or examinee guessing), the additional parameters

make them more difficult to estimate correctly

(Linacre, 2014). Our goal in this work is to esti-

mate item parameters using ML/NLP (rather than

traditional item piloting), and a Rasch-like model

gives us a straightforward and elegant way to do

this.

2.2 Computer-Adaptive Testing (CAT)

Given a bank of test items and their associated

δis, one can use CAT techniques to efficiently

administer and score tests. CATs have been shown

to both shorten tests (Weiss and Kingsbury, 1984)

and provide uniformly precise scores for most

examinees, by giving harder items to subjects of

higher ability and easier items to those of lower

ability (Thissen and Mislevy, 2000).

Assuming test item independence, the condi-

tional probability of an item response sequence

r = 〈r1, r2, . . . , rt〉 given θ is the product of all

the item-specific IRF probabilities:

p(r|θ) =

t∏

i=1

pi(θ)
ri (1− pi(θ))

1−ri , (2)

where ri denotes the graded response to item i

(i.e., ri = 1 if correct, ri = 0 if incorrect).

The goal of a CAT is to estimate a new

examinee’s θ as precisely as possible with as

few items as possible. The precision of θ depends

on the items in r: Examinees are best evaluated

by items where δi ≈ θ. However, because the

true value of θ is unknown (this is, after all,

the reason for testing!), we use an iterative

adaptive algorithm. First, make a ‘‘provisional’’
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CEFR Level Description Scale

C2 Proficient / Mastery 100

C1 Advanced / Effective 80

B2 Upper Intermediate / Vantage 60

B1 Intermediate / Threshold 40

A2 Elementary / Waystage 20

A1 Beginner / Breakthrough 0

Table 1: The Common European Framework of

Reference (CEFR) levels and our corresponding test

scale.

estimate θ̂t ∝ argmaxθ p(rt|θ) by maximizing

the likelihood of observed responses up to point

t. Then, select the next item difficulty based on a

‘‘utility’’ function of the current estimate δt+1 =
f(θ̂t). This process repeats until reaching some

stopping criterion, and the final θ̂t determines

the test score. Conceptually, CAT methods are

analogous to active learning in the ML/NLP

literature (Settles, 2012), which aims to minimize

the effort required to train accurate classifiers by

adaptively selecting instances for labeling. For

more discussion on CAT administration and scor-

ing, see Segall (2005).

2.3 The Common European Framework of

Reference (CEFR)

The Common European Framework of Reference

(CEFR) is an international standard for describ-

ing the proficiency of foreign-language learners

(Council of Europe, 2001). Our goal is to create

a test integrating reading, writing, listening, and

speaking skills into a single overall score that

corresponds to CEFR-derived ability. To that end,

we designed a 100-point scoring system aligned

to the CEFR levels, as shown in Table 1.

By its nature, the CEFR is a descriptive (not pre-

scriptive) proficiency framework. That is, it de-

scribes what kinds of activities a learner should

be able to do—and competencies they should

have—at each level, but provides little guidance

on what specific aspects of language (e.g., vocab-

ulary) are needed to accomplish them. This helps

the CEFR achieve its goal of applying broadly

across languages, but also presents a challenge

for curriculum and assessment development for

any particular language. It is a coarse description

of potential target domains—tasks, contexts, and

conditions associated with language use (Bachman

and Palmer, 2010; Kane, 2013)—that can be

sampled from in order to create language curricula

or assessments. As a result, it is left to the devel-

opers to define and operationalize constructs based

on the CEFR, targeting a subset of the activities

and competences that it describes.

Such work can be seen in recent efforts under-

taken by linguists to profile the vocabulary and

grammar linked to each CEFR level for specific

languages (particularly English). We leverage

these lines of research to create labeled data

sets, and train ML/NLP models that project item

difficulty onto our CEFR-derived scale.

2.4 Test Construct and Item Formats

Our aim is to develop a test of general English

language proficiency. According to the CEFR

global descriptors, this means the ability to under-

stand written and spoken language from varying

topics, genres, and linguistic complexity, and to

write or speak on a variety of topics and for a

variety of purposes (Council of Europe, 2001).

We operationalize part of this construct using

five item formats from the language testing liter-

ature. These are summarized in Table 2 and col-

lectively assess reading, writing, listening, and

speaking skills. Note that these items may not

require examinees to perform all the linguistic

tasks relevant to a given CEFR level (as is true

with any language test), but they serve as strong

proxies for the underlying skills. These formats

were selected because they can be automatically

generated and graded at scale, and have decades

of research demonstrating their ability to predict

linguistic competence.

Two of the formats assess vocabulary breadth,

known as yes/no vocabulary tests (Figure 2).

These both follow the same convention but vary

in modality (text vs. audio), allowing us to mea-

sure both written and spoken vocabulary. For these

items, the examinee must select, from among text

or audio stimuli, which are real English words

and which are English-like pseudowords (morphol-

ogically and phonologically plausible, but have no

meaning in English). These items target a founda-

tional linguistic competency of the CEFR, namely,

the written and spoken vocabulary required to

meet communication needs across CEFR levels

(Milton, 2010). Test takers who do well on these

tasks have a broader lexical inventory, allowing

for performance in a variety of language use situ-

ations. Poor performance on these tasks indicates

a more basic inventory.
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Item Format Scale Model Skills References

Yes/No (text) Vocab (§3) L,R,W Zimmerman et al. (1977); Staehr (2008); Milton (2010)

Yes/No (audio) Vocab (§3) L,S Milton et al. (2010); Milton (2010)

C-Test Passage (§4) R,W Klein-Braley (1997); Reichert et al. (2010); Khodadady (2014)

Dictation Passage (§4) L,W Bradlow and Bent (2002, 2008)

Elicited Speech Passage (§4) R,S Vinther (2002); Jessop et al. (2007); Van Moere (2012)

Table 2: Summary of language assessment item formats in this work. For each format, we indicate the machine-

learned scale model used to predict item difficulty δi, the linguistic skills it is known to predict (L = listening, R

= reading, S = speaking, W = writing), and some of the supporting evidence from the literature.

Figure 2: Example test item formats that use the

vocabulary scale model to estimate difficulty.

The other three item formats come out of the

integrative language testing tradition (Alderson

et al., 1995), which requires examinees to draw

on a variety of language skills (e.g., grammar,

discourse) and abilities (e.g., reading, writing) in

order to respond correctly. Example screenshots

of these item formats are shown in Figure 4.

The c-test format is a measure of reading ability

(and to some extent, writing). These items contain

passages of text in which some of the words have

been ‘‘damaged’’ (by deleting the second half

of every other word), and examinees must com-

plete the passage by filling in missing letters

from the damaged words. The characteristics of

the damaged words and their relationship to the

text ranges from those requiring lexical, phrasal,

clausal, and discourse-level comprehension in

order to respond correctly. These items indicate

how well test takers can process texts of varied

abstractness and complexity versus shorter more

concrete texts, and have been shown to reliably

predict other measures of CEFR level (Reichert

et al., 2010).

The dictation task taps into both listening and

writing skills by having examinees transcribe an

audio recording. In order to respond successfully,

examinees must parse individual words and under-

stand their grammatical relationships prior to

typing what they hear. This targets the linguistic

demands required for overall listening compre-

hension as described in the CEFR. The writing

portion of the dictation task measures examinee

knowledge of orthography and grammar (markers

of writing ability at the A1/A2 level), and to

some extent meaning. The elicited speech task

taps into reading and speaking skills by requiring

examinees to say a sentence out loud. Test takers

must be able to process the input (e.g., orthog-

raphy and grammatical structure) and are eval-

uated on their fluency, accuracy, and ability to

use complex language orally (Van Moere, 2012).

This task targets sentence-level language skills

that incorporate simple-to-complex components

of both the reading and speaking ‘‘can-do’’ state-

ments in the CEFR framework. Furthermore, both

the dictation and elicited speech tasks also measure

working memory capacity in the language, which

is regarded as shifting from lexical competence to

structure and pragmatics somewhere in the B1/B2

range (Westhoff, 2007).

3 The Vocabulary Scale

For the experiments in this section, a panel of lin-

guistics PhDs with ESL teaching experience first

compiled a CEFR vocabulary wordlist, synthesiz-

ing previous work on assessing active English lan-

guage vocabulary knowledge (e.g., Capel, 2010,

2012; Cambridge English, 2012). This standard-

setting step produced an inventory of 6,823

English words labeled by CEFR level, mostly

in the B1/B2 range ( ). We did not conduct
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any formal annotator agreement studies, and the

inventory does include duplicate entries for types

at different CEFR levels (e.g., for words with

multiple senses). We used this labeled wordlist

to train a vocabulary scale model that assigns δi
scores to each yes/no test item (Figure 2).

3.1 Features

Culligan (2015) found character length and corpus

frequency to significantly predict word difficulty,

according IRT analyses of multiple vocabulary

tests (including the yes/no format). This makes

them promising features for our CEFR-based vo-

cabulary scale model.

Although character length is straightforward,

corpus frequencies only exist for real English

words. For our purposes, however, the model must

also make predictions for English-like pseudo-

words, since our CAT approach to yes/no items

requires examinees to distinguish between words

and pseudowords drawn from a similar CEFR-

based scale range. As a proxy for frequency, we

trained a character-level Markov chain language

model on the OpenSubtitles corpus1 using modi-

fied Kneser-Ney smoothing (Heafield et al., 2013).

We then use the log-likelihood of a word (or pseu-

doword) under this model as a feature.

We also use the Fisher score of a word under the

language model to generate more nuanced ortho-

graphic features. The Fisher score ∇x of word x

is a vector representing the gradient of its log-

likelihood under the language model, parameter-

ized bym: ∇x = ∂
∂m

log p(x|m). These features

are conceptually similar to trigrams weighted by tf-

idf (Elkan, 2005), and are inspired by previous

work leveraging information from generative se-

quence models to improve discriminative classi-

fiers (Jaakkola and Haussler, 1999).

3.2 Models

We consider two regression approaches to model

the CEFR-based vocabulary scale: linear and

weighted-softmax. Let yx be the CEFR level of

word x, and δ(yx) be the 100-point scale value

corresponding to that level from Table 1.

For the linear approach, we treat the difficulty of

a word as δx = δ(yx), and learn a linear function

with weights w on the features of x directly. For

weighted-softmax, we train a six-way multinomial

1We found movie subtitle counts (Lison and Tiedemann,

2016) to be more correlated with the expert CEFR judgments

than other language domains (e.g., Wikipedia or newswire).

Vocabulary Scale Model rALL rXV

Linear regression .98 .30

w/o character length .98 .31

w/o log-likelihood .98 .34

w/o Fisher score .38 .38

Weighted-softmax regression .90 .56

w/o character length .91 .56

w/o log-likelihood .89 .51

w/o Fisher score .46 .46

Table 3: Vocabulary scale model evaluations.

≈ δ English Words Pseudowords

90 loft, proceedings fortheric, retray

70 brutal, informally insequent, vasera

50 delicious, unfairly anage, compatively

30 into, rabbit knoce, thace

10 egg, mother cload, eut

Table 4: Example words and pseudowords, rated

for difficulty by the weighted-softmax vocabulary

model.

regression (MaxEnt) classifier to predict CEFR

level, and treat difficulty δx =
∑

y δ(y)p(y|x,w)
as a weighted sum over the posterior p(y|x,w).

3.3 Experiments

Experimental results are shown in Table 3. We

report Pearson’s r between predictions and expert

CEFR judgments as an evaluation measure. The

rALL results train and evaluate using the same data;

this is how models are usually analyzed in the

applied linguistics literature, and provides a sense

of how well the model captures word difficulty

for real English words. The rXV results use 10-fold

cross-validation; this is how models are usually

evaluated in the ML/NLP literature, and gives us

a sense of how well it generalizes to English-like

pseudowords (as well as English words beyond

the expert CEFR wordlist).

Both models have a strong, positive relation-

ship with expert human judgments (rALL ≥ .90),

although they generalize to unseen words less well

(rXV ≤ .60). Linear regression appears to dras-

tically overfit compared to weighted-softmax,

since it reconstructs the training data almost

perfectly while explaining little of the variance

among cross-validated labels. The feature abla-

tions also reveal that Fisher score features are
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Figure 3: Boxplots and correlation coefficients evaluating our machine-learned proficiency scale models. (a) Results

for the weighted-softmax vocabulary model (n = 6,823). (b) Cross-validation results for the weighted-softmax

passage model (n = 3,049). (c) Results applying the trained passage model, post-hoc, to a novel set of ‘‘blind’’

texts written by ESL experts at targeted CEFR levels (n = 2,349).

the most important, while character length has

little impact (possibly because length is implicitly

captured by all the Fisher score features).

Sample predictions from the weighted-softmax

vocabulary scale model are shown in Table 4.

The more advanced words (higher δ) are rarer and

mostly have Greco-Latin etymologies, whereas

the more basic words are common and mostly have

Anglo-Saxon origins. These properties appear to

hold for non-existent pseudowords (e.g., ‘cload’

seems more Anglo-Saxon and more common than

‘fortheric’ would be). Although we did not con-

duct any formal analysis of pseudoword difficulty,

these illustrations suggest that the model captures

qualitative subtleties of the English lexicon, as

they relate to CEFR level.

Boxplots visualizing the relationship between

our learned scale and expert judgments are shown

in Figure 3(a). Qualitative error analysis reveals

that the majority of mis-classifications are in fact

under-predictions simply due to polysemy. For ex-

ample: ‘a just cause’ (C1) vs. ‘I just left’ (δ = 24),

and ‘to part ways’ (C2) vs. ‘part of the way’

(δ = 11). Because these more basic word senses

do exist, our correlation estimates may be on

the conservative side. Thus, using these predicted

word difficulties to construct yes/no items (as we

do later in §5) seems justified.

4 The Passage Scale

For the experiments in this section, we leverage a

variety of corpora gleaned from online sources,

and use combined regression and ranking tech-

niques to train longer-form passage scale models.

Figure 4: Example test item formats that use the passage

scale model to estimate difficulty.

These models can be used to predict difficulty

for c-test, dictation, and elicited speech items

(Figure 4).

In contrast to vocabulary, little to no work has

been done to profile CEFR text or discourse fea-

tures for English, and only a handful of ‘‘CEFR-

labeled’’ documents are even available for model

training. Thus, we take a semi-supervised learning
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approach (Zhu and Goldberg, 2009), first by learn-

ing to rank passages by overall difficulty, and then

by propagating CEFR levels from a small number

of labeled texts to many more unlabeled texts that

have similar linguistic features.

4.1 Features

Average word length and sentence length have

long been used to predict text difficulty, and in fact

measures based solely on these features have been

shown to correlate (r = .91) with comprehension

in reading tests (DuBay, 2006). Inspired by our

vocabulary model experiments, we also trained a

word-level unigram language model to produce

log-likelihood and Fisher score features (which is

similar to a bag of words weighted by tf-idf ).

4.2 Corpora

We gathered an initial training corpus from on-

line English language self-study Web sites (e.g.,

free test preparation resources for popular English

proficiency exams). These consist of reference

phrases and texts from reading comprehension

exercises, all organized by CEFR level. We seg-

mented these documents and assigned documents’

CEFR labels to each paragraph. This resulted in

3,049 CEFR-labeled passages, containing very

few A1 texts, and a peak at the C1 level ( ).

We refer to this corpus as CEFR.

Due to the small size of the CEFR corpus and

its uncertain provenance, we also downloaded

pairs of articles from English Wikipedia2 that

had also been rewritten for Simple English3 (an

alternate version that targets children and adult

English learners). Although the CEFR alignment

for these articles is unknown, we hypothesize that

the levels for texts on the English site should be

higher than those on the Simple English site; thus

by comparing these article pairs a model can learn

features related to passage difficulty, and therefore

the CEFR level (in addition to expanding topical

coverage beyond those represented in CEFR). This

corpus includes 3,730 article pairs resulting in

18,085 paragraphs (from both versions combined).

We refer to this corpus as WIKI.

We also downloaded thousands of English

sentences from Tatoeba,4 a free, crowd-sourced

database of self-study resources for language

learners. We refer to this corpus as TATOEBA.

2https://en.wikipedia.org.
3https://simple.wikipedia.org.
4https://tatoeba.org.

Passage Ranking Model AUCCEFR AUCWIKI

Linear (rank) regression .85 .75

w/o characters per word .85 .72

w/o words per sentence .84 .75

w/o log-likelihood .85 .76

w/o Fisher score .79 .84

Table 5: Passage ranking model evaluations.

4.3 Ranking Experiments

To rank passages for difficulty, we use a linear

approach similar to that of Sculley (2010). Let x

be the feature vector for a text with CEFR label

y. A standard linear regression can learn a weight

vector w such that δ(y) ≈ x
⊺
w. Given a pair of

texts, one can learn to rank by ‘‘synthesizing’’ a

label and feature vector representing the difference

between them: [δ(y1)−δ(y2)] ≈ [x1−x2]
⊺
w. The

resulting w can still be applied to single texts (i.e.,

by subtracting the 0 vector) in order to score them

for ranking. Although the resulting predictions are

not explicitly calibrated (e.g., to our CEFR-based

scale), they should still capture an overall ranking

of textual sophistication. This also allows us to

combine the CEFR and WIKI corpora for training,

since relative difficulty for the latter is known

(even if precise CEFR levels are not).

To train ranking models, we sample 1% of par-

agraph pairs from CEFR (up to 92,964 instances),

and combine this with the cross of all paragraphs

in English × Simple English versions of the same

article from WIKI (up to 25,438 instances). We

fix δ(y) = 25 for Simple English and δ(y) = 75

for English in the WIKI pairs, under a working

assumption that (on average) the former are at the

A2/B1 level, and the latter B2/C1.

Results using cross-validation are shown in

Table 5. For each fold, we train using pairs from

the training partition and evaluate using individual

instance scores on the test partition. We report

the AUC, or area under the ROC curve (Fawcett,

2006), which is a common ranking metric for clas-

sification tasks. Ablation results show that Fisher

score features (i.e., weighted bag of words) again

have the strongest effect, although they improve

ranking for the CEFR subset while harming WIKI. We

posit that this is because WIKI is topically balanced

(all articles have an analog from both versions of

the site), so word and sentence length alone are in

fact good discriminators. The CEFR results indicate
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≈ δ Candidate Item Text

90 A related problem for aerobic organisms is oxidative stress. Here, processes including oxidative phosphorylation and

the formation of disulfide bonds during protein folding produce reactive oxygen species such as hydrogen peroxide.

These damaging oxidants are removed by antioxidant metabolites such as glutathione, and enzymes such as catalases

and peroxidases.

50 In 1948, Harry Truman ran for a second term as President against Thomas Dewey. He was the underdog and everyone

thought he would lose. The Chicago Tribune published a newspaper on the night of the election with the headline

‘‘Dewey Defeats Truman.’’ To everyone’s surprise, Truman actually won.

10 Minneapolis is a city in Minnesota. It is next to St. Paul, Minnesota. St. Paul and Minneapolis are called the ‘‘Twin

Cities’’ because they are right next to each other. Minneapolis is the biggest city in Minnesota with about 370,000

people. People who live here enjoy the lakes, parks, and river. The Mississippi River runs through the city.

Table 6: Example WIKI paragraphs, rated for predicted difficulty by the weighted-softmax passage model.

that 85% of the time, the model correctly ranks a

more difficult passage above a simpler one (with

respect to CEFR level).5

4.4 Scaling Experiments

Given a text ranking model, we now present exper-

iments with the following algorithm for propagat-

ing CEFR levels from labeled texts to unlabeled

ones for semi-supervised training:

1. Score all individual passages in CEFR, WIKI,

and TATOEBA (using the ranking model);

2. For each labeled instance in CEFR, propagate

its CEFR level to the five most similarly

ranked neighbors in WIKI and TATOEBA;

3. Combine the label-propagated passages from

WIKI and TATOEBA with CEFR;

4. Balance class labels by sampling up to 5,000

passages per CEFR level (30,000 total);

5. Train a passage scale model using the result-

ing CEFR-aligned texts.

Cross-validation results for this procedure are

shown in Table 7. The weighted-softmax regres-

sion has a much stronger positive relationship with

CEFR labels than simple linear regression. Fur-

thermore, the label-propagated WIKI and TATOEBA

supplements offer small but statistically signif-

icant improvements over training on CEFR texts

alone. Since these supplemental passages also ex-

pand the feature set more than tenfold (i.e., by

5AUC is also the effect size of the Wilcoxon rank-sum

test, which represents the probability that the a randomly

chosen text from WIKI English will be ranked higher than

Simple English. For CEFR, Table 5 reports macro-averaged

AUC over the five ordinal breakpoints between CEFR levels.

Passage Scale Model rcefr

Weighted-softmax regression .76

w/o TATOEBA propagations .75

w/o WIKI propagations .74

w/o label-balancing .72

Linear regression .13

Table 7: Passage scale model evaluations.

increasing the model vocabulary for Fisher score

features), we claim this also helps the model gen-

eralize better to unseen texts in new domains.

Boxplots illustrating the positive relationship

between scale model predictions and CEFR labels

are shown in Figure 3(b). This, while strong, may

also be a conservative correlation estimate, since

we propagate CEFR document labels down to

paragraphs for training and evaluation and this

likely introduces noise (e.g., C1-level articles may

well contain A2-level paragraphs).

Example predictions from the WIKI corpus are

shown in Table 6. We can see that the C-level

text (δ ≈ 90) is rather academic, with complex

sentence structures and specialized jargon. On the

other hand, the A-level text (δ ≈ 10) is more

accessible, with short sentences, few embedded

clauses, and concrete vocabulary. The B-level text

(δ ≈ 50) is in between, discussing a political topic

using basic grammar, but some colloquial vocab-

ulary (e.g., ‘underdog’ and ‘headline’).

4.5 Post-Hoc Validation Experiment

The results from §4.3 and §4.4 are encouraging.

However, they are based on data gathered from

the Internet, of varied provenance, using possibly

noisy labels. Therefore, one might question

whether the resulting scale model correlates well

with more trusted human judgments.
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To answer this question, we had a panel of

four experts—PhDs and graduate students in lin-

guistics with ESL teaching experience—compose

roughly 400 new texts targeting each of the six

CEFR levels (2,349 total). These were ultimately

converted into c-test items for our operational

English test experiments (§5), but because they

were developed independently from the passage

scale model, they are also suitable as a ‘‘blind’’

test set for validating our approach. Each passage

was written by one expert, and vetted by another

(with the two negotiating the final CEFR label in

the case of any disagreement).

Boxplots illustrating the relationship between

the passage scale model predictions and expert

judgments are shown in Figure 3(c), which shows

a moderately strong, positive relationship. The

flattening at the C1/C2 level is not surprising, since

the distinction here is very fine-grained, and can

be difficult even for trained experts to distinguish

or produce (Isbell, 2017). They may also be de-

pendent on genre or register (e.g., textbooks), thus

the model may have been looking for features in

some of these expert-written passages that were

missing for non-textbook-like writing samples.

5 Duolingo English Test Results

The Duolingo English Test6 is an accessible, on-

line, computer-adaptive English assessment ini-

tially created using the methods proposed in this

paper. In this section, we first briefly describe

how the test was developed, administered, and

scored (§5.1). Then, we use data logged from

many thousands of operational tests to show that

our approach can satisfy industry standards for

psychometric properties (§5.2), criterion validity

(§5.3), reliability (§5.4), and test item security

(§5.5).

5.1 Test Construction and Administration

Drawing on the five formats discussed in §2.4, we

automatically generated a large bank of more than

25,000 test items. These items are indexed into

eleven bins for each format, such that each bin

corresponds to a predicted difficulty range on our

100-point scale (0–5, 6–15, . . . , 96–100).

The CAT administration algorithm chooses the

first item format to use at random, and then

cycles through them to determine the format for

each subsequent item (i.e., all five formats have

6https://englishtest.duolingo.com.

equal representation). Each session begins with a

‘‘calibration’’ phase, where the first item is sam-

pled from the first two difficulty bins, the second

item from the next two, and so on. After the

first four items, we use the methods from §2.2 to

iteratively estimate a provisional test score, select

the difficulty δi of the next item, and sample ran-

domly from the corresponding bin for the next

format. This process repeats until the test exceeds

25 items or 40 minutes in length, whichever comes

first. Note that because item difficulties (δis) are

on our 100-point CEFR-based scale, so are the

resulting test scores (θs). See Appendix A.1 for

more details on test administration.

For the yes/no formats, we used the vocabulary

scale model (§3) to estimate δx for all words in

an English dictionary, plus 10,000 pseudowords.7

These predictions were binned by δx estimate, and

test items created by sampling both dictionaries

from the same bin (each item also contains at

least 15% words and 15% pseudowords). Item

difficulty δi = δ̄x is the mean difficulty of all

words/pseudowords x ∈ i used as stimuli.

For the c-test format, we combined the expert-

written passages from §4.5 with paragraphs ex-

tracted from other English-language sources,

including the WIKI corpus and English-language

literature.8 We followed standard procedure

(Klein-Braley, 1997) to automatically generate

c-test items from these paragraphs. For the

dictation and elicited speech formats, we used

sentence-level candidate texts from WIKI, TATOEBA,

English Universal Dependencies,9 as well as

custom-written sentences. All passages were then

manually reviewed for grammaticality (making

corrections where necessary) or filtered for inap-

propriate content. We used the passage scale

model (§4) to estimate δi for these items directly

from raw text.

For items requiring audio (i.e., audio yes/no and

elicited speech items), we contracted four native

English-speaking voice actors (two male, two

female) with experience voicing ESL instructional

materials. Each item format also has its own stat-

7We trained a character-level LSTM RNN (Graves, 2014)

on an English dictionary to produce pseudowords, and then

filtered out any real English words. Remaining candidates

were manually reviewed and filtered if they were deemed too

similar to real words, or were otherwise inappropriate.
8https://www.wikibooks.org.
9http://universaldependencies.org.
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Figure 5: Scatterplots and correlation coefficients showing how Duolingo English Test scores, based on our

ML/NLP scale models, relate to other English proficiency measures. (a) Our test score rankings are nearly

identical to those of traditional IRT θ estimates fit to real test session data (n = 21,351). (b–c) Our test scores

correlate significantly with other high-stakes English assessments such as TOEFL iBT (n = 2,319) and IELTS

(n = 991).

istical grading procedure using ML/NLP. See

Appendix A.2 for more details.

5.2 Confirmatory IRT Analysis

Recall that the traditional approach to CAT devel-

opment is to first create a bank of items, then

pilot test them extensively with human subjects,

and finally use IRT analysis to estimate item

δi and examinee θ parameters from pilot data.

What is the relationship between test scores based

on our machine-learned CEFR-derived scales

and such pilot-tested ability estimates? A strong

relationship between our scores and θ estimates

based on IRT analysis of real test sessions would

provide evidence that our approach is valid as an

alternative form of pilot testing.

To investigate this, we analyzed 524,921 〈ex-

aminee, item〉 pairs from 21,351 of the tests ad-

ministered during the 2018 calendar year, and

fit a Rasch model to the observed response data

post-hoc.10 Figure 5(a) shows the relationship be-

tween our test scores and more traditional ‘‘pilot-

tested’’ IRT θ estimates. The Spearman rank

correlation is positive and very strong (ρ = .96),

indicating that scores using our method produce

rankings nearly identical to what traditional IRT-

based human pilot testing would provide.

10Because the test is adaptive, most items are rarely

administered (§5.5). Thus, we limit this analysis to items

with >15 observations to be statistically sound. We also omit

sessions that went unscored due to evidence of rule-breaking

(§A.1).

5.3 Relationship with Other English

Language Assessments

One source of criterion validity evidence for

our method is the relationship between these test

scores and other measures of English proficiency.

A strong correlation between our scores and other

major English assessments would suggest that our

approach is well-suited for assessing language

proficiency for people who want to study or work

in and English-language environment. For this,

we compare our results with two other high-stakes

English tests: TOEFL iBT11 and IELTS.12

After completing our test online, we asked ex-

aminees to submit official scores from other tests

(if available). This resulted in a large collection

of recent parallel scores to compare against.

The relationships between our test scores with

TOEFL and IELTS are shown in Figures 5(b)

and 5(c), respectively. Correlation coefficients

between language tests are generally expected

to be in the .5–.7 range (Alderson et al., 1995),

so our scores correlate very well with both tests

(r > .7). Our relationship with TOEFL and IELTS

appears, in fact, to be on par with their published

relationship with each other (r = .73, n = 1,153),

which is also based on self-reported data (ETS,

2010).

5.4 Score Reliability

Another aspect of test validity is the reliability

or overall consistency of its scores (Murphy

11https://www.ets.org/toefl.
12https://www.ielts.org/.
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Reliability Measure n Estimate

Internal consistency 9,309 .96

Test-retest 526 .80

Table 8: Test score reliability estimates.

Security Measure Mean Median

Item exposure rate .10% .08%

Test overlap rate .43% <.01%

Table 9: Test item bank security measures.

and Davidshofer, 2004). Reliability coefficient

estimates for our test are shown in Table 8. Impor-

tantly, these are high enough to be considered

appropriate for high-stakes use.

Internal consistency measures the extent to

which items in the test measure the same under-

lying construct. For CATs, this is usually done

using the ‘‘split half’’ method: randomly split the

item bank in two, score both halves separately,

and then compute the correlation between half-

scores, adjusting for test length (Sireci et al.,

1991). The reliability estimate is well above .9, the

threshold for tests ‘‘intended for individual diag-

nostic, employment, academic placement, or other

important purposes’’ (DeVellis, 2011).

Test–retest reliability measures the consistency

of people’s scores if they take the test multiple

times. We consider all examinees who took the test

twice within a 30-day window (any longer may

reflect actual learning gains, rather than measure-

ment error) and correlate the first score with the

second. Such coefficients range from .8–.9 for

standardized tests using identical forms, and .8 is

considered sufficient for high-stakes CATs, since

adaptively administered items are distinct between

sessions (Nitko and Brookhart, 2011).

5.5 Item Bank Security

Due to the adaptive nature of CATs, they are

usually considered to be more secure than fixed-

form exams, so long as the item bank is suffi-

ciently large (Wainer, 2000). Two measures for

quantifying the security of an item bank are the

item exposure rate (Way, 1998) and test overlap

rate (Chen et al., 2003). We report the mean and

median values for these measures in Table 9.

The exposure rate of an item is the proportion of

tests in which it is administered; the average item

exposure rate for our test is .10% (or one in every

1,000 tests). While few tests publish exposure

rates for us to compare against, ours is well below

the 20% (one in five tests) limit recommended for

unrestricted continuous testing (Way, 1998). The

test overlap rate is the proportion of items that

are shared between any two randomly-chosen test

sessions. The mean overlap for our test is .43%

(and the median below .01%), which is well below

the 11–14% range reported for other operational

CATs like the GRE13 (Stocking, 1994). These

results suggest that our proposed methods are

able to create very large item banks that are quite

secure, without compromising the validity or reli-

ability of resulting test scores.

6 Related Work

There has been little to no work using ML/NLP to

drive end-to-end language test development as we

do here. To our knowledge, the only other example

is Hoshino and Nakagawa (2010), who used a

support vector machine to estimate the difficulty of

cloze14 items for a computer-adaptive test. How-

ever, the test did not contain any other item for-

mats, and it was not intended as an integrated

measure of general language ability.

Instead, most related work has leveraged ML/

NLP to predict test item difficulty from operational

test logs. This has been applied with some suc-

cess to cloze (Mostow and Jang, 2012), vocabulary

(Susanti et al., 2016), listening comprehension

(Loukina et al., 2016), and grammar exercises

(Perez-Beltrachini et al., 2012). However, these

studies all use multiple-choice formats where dif-

ficulty is largely mediated by the choice of dis-

tractors. The work of Beinborn et al. (2014) is

perhaps most relevant to our own; they used ML/

NLP to predict c-test difficulty at the word-gap

level, using both macro-features (e.g., paragraph

difficulty as we do) as well as micro-features

(e.g., frequency, polysemy, or cognateness for

each gap word). These models performed on par

with human experts at predicting failure rates for

English language students living in Germany.

Another area of related work is in predicting text

difficulty (or readability) more generally. Napoles

13https://www.ets.org/gre.
14Cloze tests and c-tests are similar, both stemming from

the ‘‘reduced redundancy’’ approach to language assessment

(Lin et al., 2008). The cloze items in the related work cited

here contain a single deleted word with four multiple-choice

options for filling in the blank.
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and Dredze (2010) trained classifiers to discrim-

inate between English and Simple English Wiki-

pedia, and Vajjala et al. (2016) applied English

readability models to a variety of Web texts (in-

cluding English and Simple English Wikipedia).

Both of these used linear classifiers with features

similar to ours from §4.

Recently, more efforts have gone into using ML/

NLP to align texts to specific proficiency frame-

works like the CEFR. However, this work mostly

focuses on languages other than English (e.g.,

Curto et al., 2015; Sung et al., 2015; Volodina

et al., 2016; Vajjala and Rama, 2018). A notable

exception is Xia et al. (2016), who trained clas-

sifiers to predict CEFR levels for reading passages

from a suite of Cambridge English15 exams, tar-

geted at learners from A2–C2. In addition to

lexical and language model features like ours (§4),

they showed additional gains from explicit dis-

course and syntax features.

The relationship between test item difficulty and

linguistic structure has also been investigated in

the language testing literature, both to evaluate the

validity of item types (Brown, 1989; Abraham and

Chapelle, 1992; Freedle and Kostin, 1993, 1999)

and to establish what features impact difficulty so

as to inform test development (Nissan et al., 1995;

Kostin, 2004). These studies have leveraged both

correlational and regression analyses to examine

the relationship between passage difficulty and

linguistic features such as passage length, word

length and frequency, negations, rhetorical orga-

nization, dialogue utterance pattern (question-

question, statement-question), and so on.

7 Discussion and Future Work

We have presented a method for developing

computer-adaptive language tests, driven by ma-

chine learning and natural language processing.

This allowed us to rapidly develop an initial

version of the Duolingo English Test for the

experiments reported here, using ML/NLP to

directly estimate item difficulties for a large

item bank in lieu of expensive pilot testing with

human subjects. This test correlates significantly

with other high-stakes English assessments, and

satisfies industry standards for score reliability

and test security. To our knowledge, we are the

15https://www.cambridgeenglish.org.

first to propose language test development in this

way.

The strong relationship between scores based

on ML/NLP estimates of item difficulty and the

IRT estimates from operational data provides evi-

dence that our approach—using items’ linguistic

characteristics to predict difficulty, a priori to any

test administration—is a viable form of test devel-

opment. Furthermore, traditional pilot analyses

produce inherently norm-referenced scores (i.e.,

relative to the test-taking population), whereas it

can be argued that our method yields criterion-

referenced scores (i.e., indicative of a given stan-

dard, in our case the CEFR). This is another

conceptual advantage of our method. However,

further research is necessary for confirmation.

We were able to able to achieve these results

using simple linear models and relatively straight-

forward lexical and language model feature engi-

neering. Future work could incorporate richer

syntactic and discourse features, as others have

done (§6). Furthermore, other indices such as nar-

rativity, word concreteness, topical coherence,

etc., have also been shown to predict text difficulty

and comprehension (McNamara et al., 2011). A

wealth of recent advances in neural NLP that may

also be effective in this work.

Other future work involves better understanding

how our large, automatically-generated item bank

behaves with respect to the intended construct.

Detecting differential item functioning (DIF)—the

extent to which people of equal ability but dif-

ferent subgroups, such as gender or age, have

(un)equal probability of success on test items—is

an important direction for establishing the fairness

of our test. While most assessments focus on de-

mographics for DIF analyses, online administra-

tion means we must also ensure that technology

differences (e.g., screen resolution or Internet

speed) do not affect item functioning, either.

It is also likely that the five item formats pre-

sented in this work over-index on language recep-

tion skills rather than production (i.e., writing and

speaking). In fact, we hypothesize that the ‘‘clip-

ping’’ observed to the right in plots from Figure 5

can be attributed to this: Despite being highly

correlated, the CAT as presented here may over

estimate overall English ability relative to tests

with more open-ended writing and speaking exer-

cises. In the time since the present experiments

were conducted, we have updated the Duolingo
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English Test to include such writing and speak-

ing sections, which are automatically graded and

combined with the CAT portion. The test–retest

reliability for these improved scores is .85, and

correlation with TOEFL and IELTS are .77 and

.78, respectively (also, the ‘‘clipping’’ effect dis-

appears). We continue to conduct research on

the quality of the interpretations and uses

of Duolingo English Test scores; interested

readers are able to find the latest ongoing

research at https://go.duolingo.com/

dettechnicalmanual.

Finally, in some sense what we have proposed

here is partly a solution to the ‘‘cold start’’

problem facing language test developers: How

does one estimate item difficulty without any

response data to begin with? Once a test is in pro-

duction, however, one can leverage the operational

data to further refine these models. It is exciting to

think that such analyses of examinees’ response

patterns (e.g., topical characteristics, register

types, and pragmatic uses of language in the texts)

can tell us more about the underlying proficiency

scale, which in turn can contribute back to the

theory of frameworks like the CEFR.
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A Appendices

A.1 Test Administration Details

Tests are administered remotely via Web browser

athttps://englishtest.duolingo.com.

Examinees are required to have a stable Internet

connection and a device with a working micro-

phone and front-facing camera. Each test session

is recorded and reviewed by human proctors

before scores are released. Prohibited behaviors

include:

• Interacting with another person in the room

• Using headphones or earbuds

• Disabling the microphone or camera

• Moving out of frame of the camera

• Looking off screen

• Accessing any outside material or devices

• Leaving the Web browser

Any of these behaviors constitutes rule-breaking;

such sessions do not have their scores released,

and are omitted from the analyses in this paper.

A.2 Item Grading Details

The item formats in this work (Table 2) are

not multiple-choice or true/false. This means

responses may not be simply ‘‘correct’’ or ‘‘incor-

rect,’’ and require more nuanced grading proce-

dures. While partial credit IRT models do exist

(Andrich, 1978; Masters, 1982), we chose instead

to generalize the binary Rasch framework to

incorporate ‘‘soft’’ (probabilistic) responses.

The maximum-likelihood estimation (MLE)

estimate used to score the test (or select the next

item) is based on the log-likelihood function:

LL(θ̂t) = log

t∏

i=1

pi(θ̂t)
ri(1− pi(θ̂t))

1−ri ,

which follows directly from equation (2). Note that

maximizing this is equivalent to minimizing

cross-entropy (de Boer et al., 2005), a measure
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of disagreement between two probability distri-

butions. As a result, ri can just as easily be a

probabilistic response (0 ≤ ri ≤ 1) as a binary

one (ri ∈ {0, 1}). In other words, this MLE

optimization seeks to find θ̂t such that the IRF pre-

diction pi(θ̂t) is most similar to each probabilistic

response ri. We believe the flexibility of this gen-

eralized Rasch-like framework helps us reduce

test administration time above and beyond a

binary-response CAT, since each item’s grade

summarizes multiple facets of the examinee’s

performance on that item. To use this general-

ization, however, we must specify a probabilistic

grading procedure for each item format. Since an

entire separate manuscript can be devoted to this

topic, we simply summarize our approaches here.

The yes/no vocabulary format (Figure 2) is tra-

ditionally graded using the sensitivity index d′—

a measure of separation between signal (word)

and noise (pseudoword) distributions from signal

detection theory (Zimmerman et al., 1977). This

index is isomorphic with the AUC (Fawcett, 2006),

which we use as the graded response ri. This can

be interpreted as ‘‘the probability that the exam-

inee can discriminate between English words and

pseudowords at level δi.’’

C-test items (Figure 4(a)) are graded using

a weighted average of the correctly filled word-

gaps, such that each gap’s weight is proportional to

its length in characters. Thus, ri can be interpreted

as ‘‘the proportion of this passage the examinee

understood, such that longer gaps are weighted

more heavily.’’ (We also experimented with other

grading schemes, but this yielded the highest test

score reliability in preliminary work.)

The dictation (Figure 4(b)) and elicited speech

(Figure 4(c)) items are graded using logistic re-

gression classifiers. We align the examinee’s

submission (written for dictation; transcribed

using automatic speech recognition for elicited

speech) to the expected reference text, and ex-

tract features representing the differences in the

alignment (e.g., string edit distance, n-grams of

insertion/substitution/deletion patterns at both

the word and character level, and so on). These

models were trained on aggregate human judg-

ments of correctness and intelligibility for tens of

thousands of test item submissions (stratified by

δi) collected during preliminary work. Each item

received≥ 15 independent binary judgments from

fluent English speakers via Amazon Mechanical

Turk,16 which were then averaged to produce

‘‘soft’’ (probabilistic) training labels. Thus ri can

be interpreted as ‘‘the probability that a random

English speaker would find this transcription/

utterance to be faithful, intelligible, and accurate.’’

For the dictation grader, the correlation between

human labels and model predictions is r = .86

(10-fold cross-validation). Correlation for the

elicited speech grader is r = .61 (10-fold cross-

validation).

16https://www.mturk.com/.
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